Up to now it was not possible to use Selective Laser Melting (SLM) on copper alloys. Now, however, research scientists at the Fraunhofer Institute for Laser Technology ILT have solved the technical problems that prevented this by enhancing the technique. The new method opens up new possibilities, for instance in plastics processing.
In SLM the workpiece is built up layer by layer on a platform from powder material. Basically, the process functions like a printer working in three dimensions. Directed by the computer-generated design data for the planned workpiece, the metal powder is deposited in layers and then melted at the required points by a laser beam. As a result, it bonds with the already produced part of the object. Material tests have shown that steel or light-metal components produced in this way exhibit the same mechanical properties as conventionally produced parts.
Owing to the high thermal conductivity of copper and copper alloys, however, it has not been possible up to now to use SLM on these materials.
It is the high thermal conductivity of copper and its alloys that makes them suitable for many applications. Inserts of these materials in steel injection molding tools for the manufacture of plastic parts ensure rapid heat removal at critical points. SLM makes it possible to integrate conformal cooling channels in these copper inserts to carry a coolant such as water. Cycle times and warping are reduced by fast and even cooling of the entire tool.
In the near future the Aachen-based research scientists intend to go a step further and process not only copper alloys but also pure copper to make dense components. The thermal conductivity of pure copper is almost twice as high as Hovadur K220. This makes for an interesting challenge!